(60) Ibid., "Chemical Engineers' Handbook," p. 191, McGrawHill, New York, 1950; International Critical Tables, Vol. 3, p. 120, McGraw-Hill, New York, 1927.
(61) Rayleigh, Phil. Mas. (6) 4, 521 (1902).
(62) Redlich, O., Kister, A. T., Turnquist, C. E., Chem. Eng. Symposium Ser. 48 (2), 49-61 (1952).
(63) Redlich, O., Kwong, J. N. S., Chem. Revs. 44, 233-44 (1949).
(64) Riddick, J. A., Toops, E. E., Jr., "Organic Solvents," 2nd ed. p. 344, Interscience, New York, 1955.
(65) Rieder, R. M., Thompson, A. R., Ind. Eng. Chem. 41, 2905-8 (1949).
(66) Robinson, C. S., Gilliland, E. R., "Elements of Fractional Distillation," 4th ed, p. 3, McGraw-Hill, New York, 1950.
(67) Scatchard, G., Hamer, W. J., J. Am. Chem. Soc. 57, 1805-9 (1935).
(68) Scheeline, H. W., Gilliland, E. R., Jnd. Eng. Chem. 31, 1050-7 (1939).
(69) Schumaker, J. E., Hunt, H., Ibid. 34, 701-4 (1942).
(70) Skolnik, H., Ibid. 43, 172-6 (1951).
(71) Sorel, E., "Distillation et rectification industrielle," in "Distillation in Practice," 1st ed., p. 133, Benn, London, 1925.
(72) Souders, M., Brown, G. G., Ind. Eng. Chem. 26, 98-103 (1934).
(73) Natl. Bur. Standards, Circ. 19 (1924).
(74) Van Ness, H. C., Chem. Eng. Sci. 4, 279-89 (1955).
(75) Wade, J., Merriman, R. W., J. Chem. Soc. 99, 997-1011 (1911).
(76) Weissberger, A., "Physical Methods of Organic Chemistry," 2nd ed, p. 263, Interscience, New York, 1949.
(77) White, J. F., Trans. Am. Inst. Chem. Engrs. 38, 435-44 (1942).
(78) Wilson, A., Simons, E. L., Ind Eng. Chem. 44, 2214-19 (1952).
(79) Wohl, K., Trans. Am. Inst. Chem. Engrs. 42, 215-49 (1946).
(80) Young, S., Fortley, F. C., J. Chem. Soc. 81, 717-39 (1902).

Received for review April 8, 1958. Accepted July 7, 1958. Division of Industrial and Engineering Chemistry, 131st Meeting, ACS, Miami, Fla, April 1957.

Thermal Stability of Concentrated Nitric Acid

MANOJ D. SANGHVI and WEBSTER B. KAY
The Ohio State University, Columbus, Ohio

Concentrated nitric acid containing more than 90 weight $\%$ of HNO_{3}, when confined in a closed container at room temperature and above, dissociates to form oxides of nitrogen, water, and oxygen. Because of the low solubility of the oxygen in the equilibrium mixture, considerable pressure may result if the ratio of the vapor volume to the liquid volume in the container is small. In view of the wide use of fuming nitric acid as a component of binary liquid rocket propellants and as a nitrating agent, a knowledge of the thermal stability, therefore, is of real practical importance in the handling and storage of the concentrated acid.
In the course of an investigation of the volumetric and phase behavior of concentrated nitric acid ($8-10$) $P-V-T$ data were obtained at physicochemical equilibrium for mixtures of known initial composition. By the application of the principles of chemical thermodynamics to these data, information has been obtained on the chemical stability of the concentrated acid as a function of its initial composition.

ESTIMATION OF EQUILIBRIUM COMPOSITION

The dissociation of nitric acid in the heterogeneous vapor-liquid region is a kinetically complex reaction which is explained as proceeding according to the following steps (6):

$$
\begin{array}{rl}
2 \mathrm{HNO}_{3} & \rightleftarrows \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{~N}_{2} \mathrm{O}_{5} & \rightleftarrows \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{O}_{2} \\
\mathrm{~N}_{2} \mathrm{O}_{3} & \mathrm{NO}+\mathrm{NO}_{2} \\
\mathrm{NO}+1 / 2 \mathrm{O}_{2} & \rightleftarrows \mathrm{NO}_{2}
\end{array}
$$

The summation of these steps leads to the over-all stoichiometric relation

$$
\begin{equation*}
2 \mathrm{HNO}_{3}=\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \tag{1}
\end{equation*}
$$

where $\mathrm{N}_{2} \mathrm{O}_{4}$ designates an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}.
Because of the complexity of the solubility relations of oxygen and oxides of nitrogen and the paucity of data on the activity coefficients of the various species, calculation of the true thermodynamic equilibrium constants expressed in terms of the activities of the species is practically impossible. However, it is possible to calculate an ap-
parent equilibrium "constant" in terms of the equilibrium mole fractions of nitric acid, nitrogen tetroxide, and water, defined as

$$
\begin{equation*}
K_{x}=\frac{\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)}{\left(\mathrm{HNO}_{3}\right)^{2}} \tag{2}
\end{equation*}
$$

For its calculation, the composition of the liquid phase at equilibrium conditions is needed. This was estimated on the basis of an oxygen material balance on the system and the stoichiometry of the dissociation reaction given by Equation 1. The oxygen balance on the system at equilibrium can be written (9) as

$$
\begin{align*}
n_{\mathrm{O}_{2}} & =n_{\mathrm{O}_{2}}^{G}+n_{\mathrm{O}_{2}}^{L} \tag{3}\\
& =p_{\mathrm{O}_{2}}\left[\frac{V^{G}}{z_{\mathrm{O}_{2}} R T}+k_{\mathrm{O}_{2}} V^{\mathbf{L}}\right] \tag{4}
\end{align*}
$$

where
$n_{\mathrm{O}_{2}}=$ total number of moles of oxygen in system at equilibrium formed from dissociation of nitric acid, at pressure p^{∞} and temperature T
$n_{\mathrm{O}_{2}}^{\mathrm{G}}=$ number of moles of oxygen in gas phase
$n_{\mathrm{O}_{2}}^{L}=$ number of moles of oxygen in liquid phase
$p_{\mathrm{O}_{2}}^{2}=$ partial pressure of oxygen in gas phase
$V^{G}=$ volume of vapor phase at equilibrium
$z_{\mathrm{O}_{2}}=$ compressibility factor of oxygen at pressure $p_{\mathrm{O}_{1}}$ and
$k_{\mathrm{O}_{2}}=C_{\mathrm{O}_{2}}^{\mathrm{L}} / p_{\mathrm{O}_{2}}$ Henry's law constant for solubility of oxygen in liquid phase of equilibrium composition at temperature T
$C_{\mathrm{O}_{2}}^{L}=$ concentration of oxygen in liquid phase
$V^{L}=$ volume of liquid phase at equilibrium
The compressibility factor, $z_{\mathrm{O}_{2}}$, obtained from a generalized compressibility chart, was ${ }^{2}$ found to be very nearly unity for the conditions investigated. The partial pressure of oxygen under equilibrium conditions, $p_{\mathrm{O}_{2}}$, was obtained by correcting the total equilibrium pressure for the vapor pressures due to nitric acid, nitrogen dioxide, and water present in the liquid phase. For this purpose, the vapor pressure data for the temary mixtures of nitric acid, nitro-
gen dioxide, and water, reported by McKeown and Belles (11-13) for $25^{\circ}, 40^{\circ}$, and 60° C., were extrapolated to $85^{\circ} \mathrm{C}$.

For a first approximation, the partial pressure of oxygen was assumed to be equal to the equilibrium pressure observed. By Equation 4, n_{0} was calculated and from the stoichiometry of the dissociation equation, the quantity of nitric acid dissociated and the quantities of nitrogen tetroxide and water formed, were obtained. From a knowledge of the initial composition, the equilibrium composition was then calculated. Its vapor pressure at $85^{\circ} \mathrm{C}$. was estimated and subtracted from the observed equilibrium pressure to give a corrected value of the partial pressure of oxygen. The calculation was then repeated using this corrected p_{0}. After several trials the composition of the equilibrium liquid phase converged to a constant value.

In these calculations, Henry's law constant, $k_{O_{2}}$, was estimated from the work of Robertson, Mason, and Cor ${ }^{2}$ coran (14) and Kay and Stern (9), and an average value of $5.65 \times$ 10^{-3} mole per liter-atmosphere at $85^{\circ} \mathrm{C}$. was used.

RESULTS AND DISCUSSION

The equilibrium composition of each of the mixtures studied was calculated at $85^{\circ} \mathrm{C}$. and the data were used in Equation 2 to calculate K_{x}. The results are summarized in Table I and are shown graphically in Figure 1, where
the logarithm of the apparent equilibrium constant is plotted against the logarithm of the oxygen pressure at equilibrium. The relation is approximately a linear one for initially pure nitric acid and its binary and ternary mixtures with nitrogen dioxide and water over a range of oxygen pressures between 20 and 1200 p.s.i. and V^{Q} / V ratios from 0.05 to 0.80 .
The equation of this line is:

$$
\begin{equation*}
\log K_{x}=0.25 \log p_{\mathrm{o}_{2}}+C \tag{5}
\end{equation*}
$$

The product ($K_{x} \times P_{0}{ }^{0025}$), therefore, should be a constant. As will be seen in the table, this is approximately true. The deviations are due, probably, to uncertainties in the estimation of the partial pressure of oxygen and in the equilibrium composition as well as in the calculation of $K_{x^{*}}$ It is estimated that the calculated partial pressures and equilibrium compositions are accurate to within $\pm 3 \%$. The fact that the deviations are greatest in the high pressure region would seem to indicate that better agreement might be expected if the activities of the species instead of their mole fractions were used to calculate K.
Because the partial pressure of oxygen exerts an effect only as the fourth root, it is evident that the effect of oxygen on the equilibrium is very small compared to the effect of nitrogen tetroxide and water. Consequently, the dissociation can be suppressed much more effectively by

Table I. Correlation of Equilibrium Data
Temperature, $85^{\circ} \mathrm{C}$.

Initial Composition, Weight \%			Sp. Vol., Cu.Ft./Lb.	V^{G} / V
HNO_{3}	NO_{2}	$\mathrm{H}_{2} \mathrm{O}$		
100.00	0.00	0.00	0.01278	0.138
		0.01393	0.208
.	. . . \cdot	\cdots	0.01640	0.330
.	0.01932	0.433
92.50	7.50	0.00	0.01244	0.113
		...	0.01381	0.211
	...	\cdots	0.01861	0.421
\ldots	0.04416	0.765
85.00	15.00	0.00	0.01208	0.100
			0.01340	0.191
....	'.'.	. \cdot.	0.01848	0.421
. . .	. \cdot. ${ }^{\text {a }}$. . .	0.04562	0. 772
70.00	30.00	0.00	0.01363	0.217
97.50	0.00	2.50	0.01277	0.116
.	0.01426	0.216
\ldots	\ldots	...	0.01759	0.374
. \cdot.	...	\ldots	0.03689	0.708
95.00	0.00	5.00	0.01190	0.048
.	0.01252	0.086
....	\ldots	\ldots	0.01406	0.188
. \cdot.	0.01961	0.429
. . .			0.05633	0.814
90.00	0.00	10.00	0.01363	0.149
94.70	4.69	0.61	0.01363	0.187
84.56	13.66	1.78	0.01363	0.190
79.22	18.37	2.41	0.01363	0.195
72.37	24.44	3.19	0.01363	0.196
		. . .	0.02371	0.561
86.05	11.71	2.24	0.01363	0.185
81.29	15.65	3.06	0.01363	0.186
76.61	19.56	3.83	0.01363	0.205
95.00	3.59	1.41	0.01363	0.182
.	0.01762	0.375
		0.02389	0.538
90.00	7.18	2.82	0.01363	0.194
.	0.02371	0.535
85.00	10.77	4.23	0.01363	0.176
.	0.02371	0.533
80.00	14.36	5.64	0.01363	0.178

Equil.
Press.,
P.S.I.A.
1183
902
618
465
878
632
359
152
640
479
270
133
229
739
516
328
138
595
493
348
202
76
147
654
178
82
80
79
176
78
72
580
340
232
222
134
80
70
58

Partial
Press. Equilibrium Composition,

Figure 1. Relation between oxygen pressure at equilibrium and apparent equilibrium constant calculated in terms of final mole fractions with nitrogen dioxide expressed as $\mathrm{N}_{2} \mathrm{O}_{4}$
nitrogen tetroxide and water as additives than by oxygen. Conversely, it may be expected that the equilibrium will be disturbed very little by the removal of oxygen from the system as the reaction proceeds, but will be affected considerably by the removal of nitrogen tetroxide and water. The relative effects of nitrogen tetroxide and water are satisfactorily explained on the basis of molecular species $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$. Hence, on a weight basis, water is expected to be about five times as effective as nitrogen tetroxide.
The calculated compositions of the liquid phase at physicochemical equilibrium at $85^{\circ} \mathrm{C}$. are plotted on the triangular diagram (Figure 2). None of the equilibrium mixtures contain more than about 91% of nitric acid, indicating that acids of this strength and above are unstable and would decompose spontaneously at this temperature. On the other hand, ternary mixtures containing 80% of nitric acid and more than 6% of water are stable. Compositions between these two extremes are stable only under oxygen pressure (50 to 1500 p.s.i.a.).

The effect of temperature on the degree of dissociation of pure nitric acid at physicochemical equilibrium was calculated in the range from 76° to $125^{\circ} \mathrm{C}$. by Kay and Stern (9). In those calculations, the partial pressure of oxygen, $p_{\mathrm{O}_{2}}$ was assumed as being equal to the total pressure because of a lack of data on vapor pressures in the ternary system nitric acid-nitrogen dioxide-water. These values have now been corrected for the partial pressures of nitric acid, nitrogen dioxide, and water in the vapor phase and the results, including the new values of the Henry's law constant, are summarized in Table II. Also listed are the corresponding compositions of the liquid phase both as weight per cent of nitric acid, nitrogen dioxide, and water and as weight per cent of nitric acid and weight per cent of nitrous acid. The latter are based on the equilibrium

$$
\begin{equation*}
\mathrm{HNO}_{3} \rightleftarrows \mathrm{HNO}_{2}+1 / 2 \mathrm{O}_{2} \tag{6}
\end{equation*}
$$

Figure 2. Liquid phase compositions at equilibrium for various initial compositions in the nitric acidanitrogen dioxide-water system at $85^{\circ} \mathrm{C}$.

Table II. Calculated Values of Degree of Dissociation of Pure Nitric Acid, Henry's Low Constant for Oxygen in Nitrie Acid, and Liquid Phase Compositions at Physicachemical Equilibrium						
k_{0} Corr., Mole/Liter-Atm. Cort. $\times 10^{3}$			Equilibrium Composition Weight \%			
			Equation 1			Equation 6
			HNO_{3}	$\mathrm{r}_{2} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HNO}_{3} \mathrm{HNO}_{2}$
76	0.139	5.18	87.64	10.33	2.02	94.725 .28
85	0.148	5.54	86.63	11.02	2.16	94.375 .63
95	0.158	5.95	85.93	11.78	2.31	93.986 .02
105	0.168	6.39	85.00	12.54	2.45	93.606 .40
115	0.179	6.86	84.01	13.37	2.62	93.176 .83
125	0.191	7.40	82.91	14.29	2.80	92.70 7.30
$\alpha=\mathrm{deg}$	ee of dis	ciation of	,			

It is seen that the degree of dissociation increases with temperature.

These calculations are of interest not only in the handling and storage of nitric acid but also in the manufacture of concentrated nitric acid from liquid nitrogen dioxide, water, and oxygen under pressure (3,4), wherein the same equilibrium is approached from the other side.

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightleftarrows 2 \mathrm{HNO}_{3} \tag{7}
\end{equation*}
$$

The maximum concentration attainable in this process for various conditions can be estimated for $85^{\circ} \mathrm{C}$. from results shown in Figure 1 and Table I. Similar calculations for other temperatures may be made using the data presented earlier (8). The earlier work of Gaddy (7) shows, erroneously, an increase in equilibrium concentration of nitric acid with temperature when a mixture of nitrogen dioxide, water, and oxygen in stoichiometric proportions is agitated in an autoclave. The time to reach equilibrium was stated to be 0.5 hour. The results reported by the authors as well as that of Fauser (3) indicate a much longer time for the attainment of equilibrium. Ellis and Murray (2), on the basis of thermodynamic data of Forsythe and Giauque (5), showed that the equilibrium degree of dissociation of nitric acid in the vapor phase increases with temperature.

NOMENCLATURE

[^0]
Superscripts

G = vapor phase
$L=$ liquid phase
$\infty=$ at physicochemical equilibrium

Subscript

$\mathrm{O}_{2}=$ for oxygen
Composite symbols
$k_{\mathrm{O}_{2}}=$ Henry's law constant for oxygen
$K_{x}{ }^{2}=$ apparent equilibrium constant in terms of mole fractions

LITERATURE CITED

(1) Curtis, H. A., "Fixed Nitrogen," p. 401, Chemical Catalog Co., New York, 1932.
(2) Ellis, W. R., Murray, R. C., J. Appl. Chem. 3, 318 (1953).
(3) Fauser, G., Chimie et industrie 20, 414 (1928).
(4) Foerster, F., Burchardt, T., Fricke, E., Z. angew. Chem. 33, 129 (1920)
(5) Forsythe, W. R., Giauque, W. F., J. Am. Chem. Soc. 64, 148, 3069 (1942); 65, 2479 (1943).
(6) Franck, H. H., Schirmer, W. F., Electrochem. 54, 254 (1950).
(7) Gaddy, V. L., unpublished research, Fixed Nitrogen Research Laboratory; by Curtis in (1).
(8) Kay, W. B., Sanghvi, M. K. D., J. Chem. Eng. Data 4, 22 (1959).
(9) Kay, W. B., Stern, S. A., Ind. Eng. Chem. 47, 1463, (1955).
(10) Kay, W. B., Stern, S. A., Sanghvi, M. K. D., Ind. Eng. Chem., Chem. Eng. Data Ser. 2, 21 (1957).
(11) McKeown, A. B., Belles, F. E., Ind. Eng. Chem. 47, 2540 (1955).
(12) McKeown, A. B., Belles, F. E., Nat1. Advisory Comm. Aeronaut. NACA RM E53G08 (1953).
(13) Ibid., NACA RM E53LI4 (1954).
(14) Robertson, G. D., Jr., Mason, D. M., Corcoran, W. H., Ind. Eng. Chem. 47, 1470 (1955).
(15) Yost, D. M., Russell, H., "Systematic Inorganic Chemistry," p. 78, Prentice-Hall, New York, 1944.

Received for review December 14, 1957. Accepted May 8, 1958. Based on work performed under Contract AF 33(038) 10381 with Wright Air Development Center, Wright-Patterson Air Force Base.

Single Generalized Chart of Detonation

Parameters for Gaseous Mixtures

ROBERT G. DUNN and BERNARD T. WOLFSON
Aeronautical Research Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio

There exists a need for simplified methods of determining and visualizing the values of detonation parameters for all gaseous mixtures. Some of the instability phenomena observed in aircraft propulsion systems (turbojet afterburner, ramjet, rocket) are believed to be the result of some form of detonation. Information on detonation parameters may have direct application in the understanding of these instabilities. These instability phenomena and their possible association with detonative combustion have been discussed $(1,5,6)$.
Information relating to aircraft propulsion system instability phenomena can be applied to analogous situations in chemical and other industries. Thus, fundamental aspects of detonation are likely to find application in many areas.
To provide simplified means for analytically determining values of detonation parameters, the authors rearranged the classical equations of detonation and devised a calculation procedure based on the resulting generalized equations, involving only nondimensional quantities (2). During the process of generalizing the detonation equations, it became apparent that it would be extremely useful if the detonation parameters for all gaseous mixtures could be presented in nondimensional form on a Mollier-type diagram. This would aid considerably in the visualization of the relationships among the various detonation parameters. It was found that the generalized detonation equations could be utilized for the graphical presentation of detonation parameters on a small number of Mollier-type diagrams. Three such diagrams were presented (7), covering the ranges of detonation parameters normally encountered for gaseous mixtures.
In this report, a single generalized chart of detonation parameters for gaseous mixtures is presented. This chart represents an improvement of the generalized charts previously presented (7), in that the detonation parameters for all gaseous mixtures are now on a single diagram rather than on a series of diagrams, thereby eliminating the necessity for interpolation between charts. The chief usefulness of the generalized chart is to provide a means for the visualization of the relationships among the detonation parameters for all gaseous mixtures on a single diagram. The ap-
plication of the single generalized chart is illustrated by several examples.

EQUATIONS FOR GENERALIZED CHART

It has been shown (2) that the following four equations can be derived directly from the classical equations describing the detonation process for gaseous mixtures:

$$
\begin{gather*}
B=\frac{1}{\gamma_{2}^{2}-1}\left[\frac{M_{1}^{2}}{2}+\left(\frac{\gamma_{2}}{\gamma_{1}}\right)^{2}\left(\frac{1}{2 M_{1}^{2}}+\gamma_{2}\right)\right]-\frac{1}{\gamma_{1}-1} \tag{1}\\
\frac{p_{2}}{p_{1}}=\frac{1}{\gamma_{2}+1}\left(\gamma_{1} M_{1}^{2}+1\right) \tag{2}\\
\frac{\rho_{2}}{\rho_{1}}=\frac{\gamma_{2}+1}{\gamma_{2}}\left(\frac{\gamma_{1} M_{1}^{2}}{\gamma_{1} M_{1}^{2}+1}\right) \tag{3}\\
\frac{T_{2} M_{w_{1}}}{T_{1} M_{w_{2}}}=\frac{\gamma_{2}}{\left(\gamma_{2}+1\right)^{2}} \cdot \frac{\left(\gamma_{1} M_{1}^{2}+1\right)^{2}}{\gamma_{1} M_{1}^{2}} \tag{4}
\end{gather*}
$$

where B is the energy release function, $B=\left(J h / a_{1}^{2}\right)$, and M_{1} is the detonative Mach number, $M_{1}=\left(D / a_{1}\right)$.

In the derivation of these equations it was assumed that the ideal gas law holds for the reactants and the products at the initial and final conditions, respectively. This is equivalent to the assumption that the actual temperatures and pressures of the initial and final mixtures in all cases are in a region where the use of the ideal gas law results in negligible error. For the final mixture, this is a reasonable assumption in all cases in view of the extremely high temperatures occurring in detonation. For the initial mixture, this is a reasonable assumption if the initial conditions are sufficiently far from the critical conditions of pressure and temperature for each component so that compressibility is a negligible factor. Thus, in all cases where an equation of state has been required for describing the states of the initial and final mixtures at the initial and final conditions, respectively, the ideal gas law has been used. The usual assumption is also made that chemical equilibrium is attained in the detonation wave.

[^0]: c 프 concentration
 $n=$ number of moles
 $p=$ pressure
 $R=$ universal gas constant
 $T=$ temperature, absolute
 $V=$ volume
 $Z=$ compressibility factor

